
2Rule-based expert systems

In which we introduce the most popular choice for building

knowledge-based systems: rule-based expert systems.

2.1 Introduction, or what is knowledge?

In the 1970s, it was finally accepted that to make a machine solve an intellectual

problem one had to know the solution. In other words, one has to have

knowledge, ‘know-how’, in some specific domain.

What is knowledge?

Knowledge is a theoretical or practical understanding of a subject or a domain.

Knowledge is also the sum of what is currently known, and apparently knowl-

edge is power. Those who possess knowledge are called experts. They are the

most powerful and important people in their organisations. Any successful

company has at least a few first-class experts and it cannot remain in business

without them.

Who is generally acknowledged as an expert?

Anyone can be considered a domain expert if he or she has deep knowledge (of

both facts and rules) and strong practical experience in a particular domain. The

area of the domain may be limited. For example, experts in electrical machines

may have only general knowledge about transformers, while experts in life

insurance marketing might have limited understanding of a real estate insurance

policy. In general, an expert is a skilful person who can do things other people

cannot.

How do experts think?

The human mental process is internal, and it is too complex to be represented as

an algorithm. However, most experts are capable of expressing their knowledge

in the form of rules for problem solving. Consider a simple example. Imagine,

you meet an alien! He wants to cross a road. Can you help him? You are an

expert in crossing roads – you’ve been on this job for several years. Thus you are

able to teach the alien. How would you do this?

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
ذهني ˌintlˈekCHo͞oəl

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
عقلي

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

You explain to the alien that he can cross the road safely when the traffic light

is green, and he must stop when the traffic light is red. These are the basic rules.

Your knowledge can be formulated as the following simple statements:

IF the ‘traffic light’ is green

THEN the action is go

IF the ‘traffic light’ is red

THEN the action is stop

These statements represented in the IF-THEN form are called production

rules or just rules. The term ‘rule’ in AI, which is the most commonly used type

of knowledge representation, can be defined as an IF-THEN structure that relates

given information or facts in the IF part to some action in the THEN part. A rule

provides some description of how to solve a problem. Rules are relatively easy to

create and understand.

2.2 Rules as a knowledge representation technique

Any rule consists of two parts: the IF part, called the antecedent (premise or

condition) and the THEN part called the consequent (conclusion or action).

The basic syntax of a rule is:

IF <antecedent>

THEN <consequent>

In general, a rule can have multiple antecedents joined by the keywords AND

(conjunction), OR (disjunction) or a combination of both. However, it is a good

habit to avoid mixing conjunctions and disjunctions in the same rule.

IF <antecedent 1>

AND <antecedent 2>

.

.

.

AND <antecedent n>

THEN <consequent>

IF <antecedent 1>

OR <antecedent 2>

.

.

.

OR <antecedent n>

THEN <consequent>

26 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

The consequent of a rule can also have multiple clauses:

IF <antecedent>

THEN <consequent 1>

<consequent 2>

.

.

.

<consequent m>

The antecedent of a rule incorporates two parts: an object (linguistic object)

and its value. In our road crossing example, the linguistic object ‘traffic light’

can take either the value green or the value red. The object and its value are linked

by an operator. The operator identifies the object and assigns the value.

Operators such as is, are, is not, are not are used to assign a symbolic value to a

linguistic object. But expert systems can also use mathematical operators to

define an object as numerical and assign it to the numerical value. For example,

IF ‘age of the customer’ < 18

AND ‘cash withdrawal’ > 1000

THEN ‘signature of the parent’ is required

Similar to a rule antecedent, a consequent combines an object and a value

connected by an operator. The operator assigns the value to the linguistic object.

In the road crossing example, if the value of traffic light is green, the first rule sets

the linguistic object action to the value go. Numerical objects and even simple

arithmetical expression can also be used in a rule consequent.

IF ‘taxable income’ > 16283

THEN ‘Medicare levy’ ¼ ‘taxable income’ � 1.5 / 100

Rules can represent relations, recommendations, directives, strategies and

heuristics (Durkin, 1994).

Relation

IF the ‘fuel tank’ is empty

THEN the car is dead

Recommendation

IF the season is autumn

AND the sky is cloudy

AND the forecast is drizzle

THEN the advice is ‘take an umbrella’

Directive

IF the car is dead

AND the ‘fuel tank’ is empty

THEN the action is ‘refuel the car’

RULES AS A KNOWLEDGE REPRESENTATION TECHNIQUE 27

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
شروط

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
لغوي

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
والعلاقات، والتوصيات، والتوجيهات، والاستراتيجيات والاستدلال

hp
Sticky Note
والتوقعات رذاذ

hp
Highlight

hp
Highlight

hp
Highlight

Strategy

IF the car is dead

THEN the action is ‘check the fuel tank’;

step1 is complete

IF step1 is complete

AND the ‘fuel tank’ is full

THEN the action is ‘check the battery’;

step2 is complete

Heuristic

IF the spill is liquid

AND the ‘spill pH’ < 6

AND the ‘spill smell’ is vinegar

THEN the ‘spill material’ is ‘acetic acid’

2.3 The main players in the expert system development team

As soon as knowledge is provided by a human expert, we can input it into a

computer. We expect the computer to act as an intelligent assistant in some

specific domain of expertise or to solve a problem that would otherwise have to

be solved by an expert. We also would like the computer to be able to integrate

new knowledge and to show its knowledge in a form that is easy to read and

understand, and to deal with simple sentences in a natural language rather than

an artificial programming language. Finally, we want our computer to explain

how it reaches a particular conclusion. In other words, we have to build an

expert system, a computer program capable of performing at the level of a

human expert in a narrow problem area.

The most popular expert systems are rule-based systems. A great number have

been built and successfully applied in such areas as business and engineering,

medicine and geology, power systems and mining. A large number of companies

produce and market software for rule-based expert system development – expert

system shells for personal computers.

Expert system shells are becoming particularly popular for developing rule-

based systems. Their main advantage is that the system builder can now

concentrate on the knowledge itself rather than on learning a programming

language.

What is an expert system shell?

An expert system shell can be considered as an expert system with the

knowledge removed. Therefore, all the user has to do is to add the knowledge

in the form of rules and provide relevant data to solve a problem.

Let us now look at who is needed to develop an expert system and what skills

are needed.

In general, there are five members of the expert system development

team: the domain expert, the knowledge engineer, the programmer, the project

28 RULE-BASED EXPERT SYSTEMS

hp
Sticky Note
حمض الاسيتيك'əˌsētik ˈasid

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
التعدين.

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

manager and the end-user. The success of their expert system entirely depends

on how well the members work together. The basic relations in the development

team are summarised in Figure 2.1.

The domain expert is a knowledgeable and skilled person capable of solving

problems in a specific area or domain. This person has the greatest expertise in a

given domain. This expertise is to be captured in the expert system. Therefore,

the expert must be able to communicate his or her knowledge, be willing to

participate in the expert system development and commit a substantial amount

of time to the project. The domain expert is the most important player in the

expert system development team.

The knowledge engineer is someone who is capable of designing, building

and testing an expert system. This person is responsible for selecting an

appropriate task for the expert system. He or she interviews the domain expert

to find out how a particular problem is solved. Through interaction with the

expert, the knowledge engineer establishes what reasoning methods the expert

uses to handle facts and rules and decides how to represent them in the expert

system. The knowledge engineer then chooses some development software or an

expert system shell, or looks at programming languages for encoding the

knowledge (and sometimes encodes it himself). And finally, the knowledge

engineer is responsible for testing, revising and integrating the expert system

into the workplace. Thus, the knowledge engineer is committed to the project

from the initial design stage to the final delivery of the expert system, and even

after the project is completed, he or she may also be involved in maintaining the

system.

The programmer is the person responsible for the actual programming,

describing the domain knowledge in terms that a computer can understand.

The programmer needs to have skills in symbolic programming in such AI

Figure 2.1 The main players of the expert system development team

29THE MAIN PLAYERS IN THE EXPERT SYSTEM DEVELOPMENT TEAM

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

languages as LISP, Prolog and OPS5 and also some experience in the application

of different types of expert system shells. In addition, the programmer should

know conventional programming languages like C, Pascal, FORTRAN and Basic.

If an expert system shell is used, the knowledge engineer can easily encode the

knowledge into the expert system and thus eliminate the need for the program-

mer. However, if a shell cannot be used, a programmer must develop the

knowledge and data representation structures (knowledge base and database),

control structure (inference engine) and dialogue structure (user interface). The

programmer may also be involved in testing the expert system.

The project manager is the leader of the expert system development team,

responsible for keeping the project on track. He or she makes sure that all

deliverables and milestones are met, interacts with the expert, knowledge

engineer, programmer and end-user.

The end-user, often called just the user, is a person who uses the expert

system when it is developed. The user might be an analytical chemist determin-

ing the molecular structure of soil from Mars (Feigenbaum et al., 1971), a junior

doctor diagnosing an infectious blood disease (Shortliffe, 1976), an exploration

geologist trying to discover a new mineral deposit (Duda et al., 1979), or a power

system operator needing advice in an emergency (Negnevitsky, 1996). Each of

these users of expert systems has different needs, which the system must meet:

the system’s final acceptance will depend on the user’s satisfaction. The user

must not only be confident in the expert system performance but also feel

comfortable using it. Therefore, the design of the user interface of the expert

system is also vital for the project’s success; the end-user’s contribution here can

be crucial.

The development of an expert system can be started when all five players have

joined the team. However, many expert systems are now developed on personal

computers using expert system shells. This can eliminate the need for the

programmer and also might reduce the role of the knowledge engineer. For

small expert systems, the project manager, knowledge engineer, programmer

and even the expert could be the same person. But all team players are required

when large expert systems are developed.

2.4 Structure of a rule-based expert system

In the early 1970s, Newell and Simon from Carnegie-Mellon University proposed

a production system model, the foundation of the modern rule-based expert

systems (Newell and Simon, 1972). The production model is based on the idea

that humans solve problems by applying their knowledge (expressed as produc-

tion rules) to a given problem represented by problem-specific information. The

production rules are stored in the long-term memory and the problem-specific

information or facts in the short-term memory. The production system model

and the basic structure of a rule-based expert system are shown in Figure 2.2.

A rule-based expert system has five components: the knowledge base, the

database, the inference engine, the explanation facilities, and the user interface.

30 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

The knowledge base contains the domain knowledge useful for problem

solving. In a rule-based expert system, the knowledge is represented as a set

of rules. Each rule specifies a relation, recommendation, directive, strategy or

heuristic and has the IF (condition) THEN (action) structure. When the condition

part of a rule is satisfied, the rule is said to fire and the action part is executed.

The database includes a set of facts used to match against the IF (condition)

parts of rules stored in the knowledge base.

The inference engine carries out the reasoning whereby the expert system

reaches a solution. It links the rules given in the knowledge base with the facts

provided in the database.

Figure 2.2 Production system and basic structure of a rule-based expert system:

(a) production system model; (b) basic structure of a rule-based expert system

31STRUCTURE OF A RULE-BASED EXPERT SYSTEM

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

The explanation facilities enable the user to ask the expert system how a

particular conclusion is reached and why a specific fact is needed. An expert

system must be able to explain its reasoning and justify its advice, analysis or

conclusion.

The user interface is the means of communication between a user seeking a

solution to the problem and an expert system. The communication should be as

meaningful and friendly as possible.

These five components are essential for any rule-based expert system. They

constitute its core, but there may be a few additional components.

The external interface allows an expert system to work with external data

files and programs written in conventional programming languages such as C,

Pascal, FORTRAN and Basic. The complete structure of a rule-based expert system

is shown in Figure 2.3.

The developer interface usually includes knowledge base editors, debugging

aids and input/output facilities.

All expert system shells provide a simple text editor to input and modify

rules, and to check their correct format and spelling. Many expert systems also

Figure 2.3 Complete structure of a rule-based expert system

32 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

include book-keeping facilities to monitor the changes made by the knowledge

engineer or expert. If a rule is changed, the editor will automatically store the

change date and the name of the person who made this change for later

reference. This is very important when a number of knowledge engineers and

experts have access to the knowledge base and can modify it.

Debugging aids usually consist of tracing facilities and break packages.

Tracing provides a list of all rules fired during the program’s execution, and a

break package makes it possible to tell the expert system in advance where to

stop so that the knowledge engineer or the expert can examine the current

values in the database.

Most expert systems also accommodate input/output facilities such as run-

time knowledge acquisition. This enables the running expert system to ask for

needed information whenever this information is not available in the database.

When the requested information is input by the knowledge engineer or the

expert, the program resumes.

In general, the developer interface, and knowledge acquisition facilities in

particular, are designed to enable a domain expert to input his or her knowledge

directly in the expert system and thus to minimise the intervention of a

knowledge engineer.

2.5 Fundamental characteristics of an expert system

An expert system is built to perform at a human expert level in a narrow,

specialised domain. Thus, the most important characteristic of an expert

system is its high-quality performance. No matter how fast the system can solve

a problem, the user will not be satisfied if the result is wrong. On the other hand,

the speed of reaching a solution is very important. Even the most accurate

decision or diagnosis may not be useful if it is too late to apply, for instance, in

an emergency, when a patient dies or a nuclear power plant explodes. Experts

use their practical experience and understanding of the problem to find short

cuts to a solution. Experts use rules of thumb or heuristics. Like their human

counterparts, expert systems should apply heuristics to guide the reasoning and

thus reduce the search area for a solution.

A unique feature of an expert system is its explanation capability. This

enables the expert system to review its own reasoning and explain its decisions.

An explanation in expert systems in effect traces the rules fired during a

problem-solving session. This is, of course, a simplification; however a real or

‘human’ explanation is not yet possible because it requires basic understanding

of the domain. Although a sequence of rules fired cannot be used to justify a

conclusion, we can attach appropriate fundamental principles of the domain

expressed as text to each rule, or at least each high-level rule, stored in the

knowledge base. This is probably as far as the explanation capability can be

taken. However, the ability to explain a line of reasoning may not be essential for

some expert systems. For example, a scientific system built for experts may not

be required to provide extensive explanations, because the conclusion it reaches

33FUNDAMENTAL CHARACTERISTICS OF AN EXPERT SYSTEM

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

can be self-explanatory to other experts; a simple rule-tracing might be quite

appropriate. On the other hand, expert systems used in decision making usually

demand complete and thoughtful explanations, as the cost of a wrong decision

may be very high.

Expert systems employ symbolic reasoning when solving a problem.

Symbols are used to represent different types of knowledge such as facts,

concepts and rules. Unlike conventional programs written for numerical data

processing, expert systems are built for knowledge processing and can easily deal

with qualitative data.

Conventional programs process data using algorithms, or in other words, a

series of well-defined step-by-step operations. An algorithm always performs the

same operations in the same order, and it always provides an exact solution.

Conventional programs do not make mistakes – but programmers sometimes do.

Unlike conventional programs, expert systems do not follow a prescribed

sequence of steps. They permit inexact reasoning and can deal with incomplete,

uncertain and fuzzy data.

Can expert systems make mistakes?

Even a brilliant expert is only a human and thus can make mistakes. This

suggests that an expert system built to perform at a human expert level also

should be allowed to make mistakes. But we still trust experts, although we do

recognise that their judgements are sometimes wrong. Likewise, at least in most

cases, we can rely on solutions provided by expert systems, but mistakes are

possible and we should be aware of this.

Does it mean that conventional programs have an advantage over expert

systems?

In theory, conventional programs always provide the same ‘correct’ solutions.

However, we must remember that conventional programs can tackle problems if,

and only if, the data is complete and exact. When the data is incomplete or

includes some errors, a conventional program will provide either no solution at

all or an incorrect one. In contrast, expert systems recognise that the available

information may be incomplete or fuzzy, but they can work in such situations

and still arrive at some reasonable conclusion.

Another important feature that distinguishes expert systems from conven-

tional programs is that knowledge is separated from its processing (the

knowledge base and the inference engine are split up). A conventional program

is a mixture of knowledge and the control structure to process this knowledge.

This mixing leads to difficulties in understanding and reviewing the program

code, as any change to the code affects both the knowledge and its processing. In

expert systems, knowledge is clearly separated from the processing mechanism.

This makes expert systems much easier to build and maintain. When an expert

system shell is used, a knowledge engineer or an expert simply enters rules in the

knowledge base. Each new rule adds some new knowledge and makes the expert

system smarter. The system can then be easily modified by changing or

subtracting rules.

34 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

The characteristics of expert systems discussed above make them different

from conventional systems and human experts. A comparison is shown in

Table 2.1.

2.6 Forward chaining and backward chaining inference
techniques

In a rule-based expert system, the domain knowledge is represented by a set of

IF-THEN production rules and data is represented by a set of facts about

the current situation. The inference engine compares each rule stored in the

Table 2.1 Comparison of expert systems with conventional systems and human experts

Human experts Expert systems Conventional programs

Use knowledge in the

form of rules of thumb or

heuristics to solve

problems in a narrow

domain.

Process knowledge

expressed in the form of

rules and use symbolic

reasoning to solve

problems in a narrow

domain.

Process data and use

algorithms, a series of

well-defined operations, to

solve general numerical

problems.

In a human brain,

knowledge exists in a

compiled form.

Provide a clear separation

of knowledge from its

processing.

Do not separate

knowledge from the

control structure to

process this knowledge.

Capable of explaining a

line of reasoning and

providing the details.

Trace the rules fired during

a problem-solving session

and explain how a

particular conclusion was

reached and why specific

data was needed.

Do not explain how a

particular result was

obtained and why input

data was needed.

Use inexact reasoning

and can deal with

incomplete, uncertain and

fuzzy information.

Permit inexact reasoning

and can deal with

incomplete, uncertain and

fuzzy data.

Work only on problems

where data is complete

and exact.

Can make mistakes when

information is incomplete

or fuzzy.

Can make mistakes when

data is incomplete or fuzzy.

Provide no solution at all,

or a wrong one, when data

is incomplete or fuzzy.

Enhance the quality of

problem solving via years

of learning and practical

training. This process is

slow, inefficient and

expensive.

Enhance the quality of

problem solving by adding

new rules or adjusting old

ones in the knowledge

base. When new knowledge

is acquired, changes are

easy to accomplish.

Enhance the quality of

problem solving by

changing the program

code, which affects both

the knowledge and its

processing, making

changes difficult.

35FORWARD AND BACKWARD CHAINING INFERENCE TECHNIQUES

hp
Sticky Note
الإستنباط

knowledge base with facts contained in the database. When the IF (condition)

part of the rule matches a fact, the rule is fired and its THEN (action) part is

executed. The fired rule may change the set of facts by adding a new fact, as

shown in Figure 2.4. Letters in the database and the knowledge base are used to

represent situations or concepts.

The matching of the rule IF parts to the facts produces inference chains.

The inference chain indicates how an expert system applies the rules to reach

a conclusion. To illustrate chaining inference techniques, consider a simple

example.

Suppose the database initially includes facts A, B, C, D and E, and the

knowledge base contains only three rules:

Rule 1: IF Y is true

AND D is true

THEN Z is true

Rule 2: IF X is true

AND B is true

AND E is true

THEN Y is true

Rule 3: IF A is true

THEN X is true

The inference chain shown in Figure 2.5 indicates how the expert system

applies the rules to infer fact Z. First Rule 3 is fired to deduce new fact X from

given fact A. Then Rule 2 is executed to infer fact Y from initially known facts B

and E, and already known fact X. And finally, Rule 1 applies initially known fact

D and just-obtained fact Y to arrive at conclusion Z.

An expert system can display its inference chain to explain how a particular

conclusion was reached; this is an essential part of its explanation facilities.

Figure 2.4 The inference engine cycles via a match-fire procedure

36 RULE-BASED EXPERT SYSTEMS

hp
Sticky Note
نستنتج

The inference engine must decide when the rules have to be fired. There are

two principal ways in which rules are executed. One is called forward chaining

and the other backward chaining (Waterman and Hayes-Roth, 1978).

2.6.1 Forward chaining

The example discussed above uses forward chaining. Now consider this tech-

nique in more detail. Let us first rewrite our rules in the following form:

Rule 1: Y & D ! Z

Rule 2: X & B & E ! Y

Rule 3: A ! X

Arrows here indicate the IF and THEN parts of the rules. Let us also add two more

rules:

Rule 4: C ! L

Rule 5: L & M ! N

Figure 2.6 shows how forward chaining works for this simple set of rules.

Forward chaining is the data-driven reasoning. The reasoning starts from the

known data and proceeds forward with that data. Each time only the topmost

rule is executed. When fired, the rule adds a new fact in the database. Any rule

can be executed only once. The match-fire cycle stops when no further rules can

be fired.

In the first cycle, only two rules, Rule 3: A ! X and Rule 4: C ! L, match facts

in the database. Rule 3: A ! X is fired first as the topmost one. The IF part of this

rule matches fact A in the database, its THEN part is executed and new fact X is

added to the database. Then Rule 4: C ! L is fired and fact L is also placed in the

database.

In the second cycle, Rule 2: X&B&E ! Y is fired because facts B, E and X are

already in the database, and as a consequence fact Y is inferred and put in the

database. This in turn causes Rule 1: Y &D ! Z to execute, placing fact Z in

the database (cycle 3). Now the match-fire cycles stop because the IF part of

Rule 5: L&M ! N does not match all facts in the database and thus Rule 5

cannot be fired.

Figure 2.5 An example of an inference chain

37FORWARD AND BACKWARD CHAINING INFERENCE TECHNIQUES

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

Forward chaining is a technique for gathering information and then inferring

from it whatever can be inferred. However, in forward chaining, many rules may

be executed that have nothing to do with the established goal. Suppose, in our

example, the goal was to determine fact Z. We had only five rules in the

knowledge base and four of them were fired. But Rule 4: C ! L, which is

unrelated to fact Z, was also fired among others. A real rule-based expert system

can have hundreds of rules, many of which might be fired to derive new facts

that are valid, but unfortunately unrelated to the goal. Therefore, if our goal is to

infer only one particular fact, the forward chaining inference technique would

not be efficient.

In such a situation, backward chaining is more appropriate.

2.6.2 Backward chaining

Backward chaining is the goal-driven reasoning. In backward chaining, an

expert system has the goal (a hypothetical solution) and the inference engine

attempts to find the evidence to prove it. First, the knowledge base is searched to

find rules that might have the desired solution. Such rules must have the goal in

their THEN (action) parts. If such a rule is found and its IF (condition) part

matches data in the database, then the rule is fired and the goal is proved.

However, this is rarely the case. Thus the inference engine puts aside the rule it is

working with (the rule is said to stack) and sets up a new goal, a sub-goal, to

prove the IF part of this rule. Then the knowledge base is searched again for rules

that can prove the sub-goal. The inference engine repeats the process of stacking

the rules until no rules are found in the knowledge base to prove the current

sub-goal.

Figure 2.6 Forward chaining

38 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
حل افتراضي

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

Figure 2.7 shows how backward chaining works, using the rules for the

forward chaining example.

In Pass 1, the inference engine attempts to infer fact Z. It searches the

knowledge base to find the rule that has the goal, in our case fact Z, in its THEN

part. The inference engine finds and stacks Rule 1: Y &D ! Z. The IF part of

Rule 1 includes facts Y and D, and thus these facts must be established.

In Pass 2, the inference engine sets up the sub-goal, fact Y, and tries to

determine it. First it checks the database, but fact Y is not there. Then the

knowledge base is searched again for the rule with fact Y in its THEN part. The

Figure 2.7 Backward chaining

39FORWARD AND BACKWARD CHAINING INFERENCE TECHNIQUES

hp
Highlight

hp
Highlight

inference engine locates and stacks Rule 2: X&B& E ! Y. The IF part of Rule 2

consists of facts X, B and E, and these facts also have to be established.

In Pass 3, the inference engine sets up a new sub-goal, fact X. It checks the

database for fact X, and when that fails, searches for the rule that infers X.

The inference engine finds and stacks Rule 3: A ! X. Now it must determine

fact A.

In Pass 4, the inference engine finds fact A in the database, Rule 3: A ! X is

fired and new fact X is inferred.

In Pass 5, the inference engine returns to the sub-goal fact Y and once again

tries to execute Rule 2: X&B&E ! Y. Facts X, B and E are in the database and

thus Rule 2 is fired and a new fact, fact Y, is added to the database.

In Pass 6, the system returns to Rule 1: Y &D ! Z trying to establish the

original goal, fact Z. The IF part of Rule 1 matches all facts in the database, Rule 1

is executed and thus the original goal is finally established.

Let us now compare Figure 2.6 with Figure 2.7. As you can see, four rules were

fired when forward chaining was used, but just three rules when we applied

backward chaining. This simple example shows that the backward chaining

inference technique is more effective when we need to infer one particular fact,

in our case fact Z. In forward chaining, the data is known at the beginning of the

inference process, and the user is never asked to input additional facts. In

backward chaining, the goal is set up and the only data used is the data needed

to support the direct line of reasoning, and the user may be asked to input any

fact that is not in the database.

How do we choose between forward and backward chaining?

The answer is to study how a domain expert solves a problem. If an expert first

needs to gather some information and then tries to infer from it whatever can be

inferred, choose the forward chaining inference engine. However, if your expert

begins with a hypothetical solution and then attempts to find facts to prove it,

choose the backward chaining inference engine.

Forward chaining is a natural way to design expert systems for analysis and

interpretation. For example, DENDRAL, an expert system for determining the

molecular structure of unknown soil based on its mass spectral data (Feigenbaum

et al., 1971), uses forward chaining. Most backward chaining expert systems

are used for diagnostic purposes. For instance, MYCIN, a medical expert system

for diagnosing infectious blood diseases (Shortliffe, 1976), uses backward

chaining.

Can we combine forward and backward chaining?

Many expert system shells use a combination of forward and backward chaining

inference techniques, so the knowledge engineer does not have to choose

between them. However, the basic inference mechanism is usually backward

chaining. Only when a new fact is established is forward chaining employed to

maximise the use of the new data.

40 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

2.7 MEDIA ADVISOR: a demonstration rule-based expert
system

To illustrate some of the ideas discussed above, we next consider a simple rule-

based expert system. The Leonardo expert system shell was selected as a tool to

build a decision-support system called MEDIA ADVISOR. The system provides

advice on selecting a medium for delivering a training program based on the

trainee’s job. For example, if a trainee is a mechanical technician responsible for

maintaining hydraulic systems, an appropriate medium might be a workshop,

where the trainee could learn how basic hydraulic components operate, how to

troubleshoot hydraulics problems and how to make simple repairs to hydraulic

systems. On the other hand, if a trainee is a clerk assessing insurance applica-

tions, a training program might include lectures on specific problems of the task,

as well as tutorials where the trainee could evaluate real applications. For

complex tasks, where trainees are likely to make mistakes, a training program

should also include feedback on the trainee’s performance.

Knowledge base

/* MEDIA ADVISOR: a demonstration rule-based expert system

Rule: 1

if the environment is papers

or the environment is manuals

or the environment is documents

or the environment is textbooks

then the stimulus_situation is verbal

Rule: 2

if the environment is pictures

or the environment is illustrations

or the environment is photographs

or the environment is diagrams

then the stimulus_situation is visual

Rule: 3

if the environment is machines

or the environment is buildings

or the environment is tools

then the stimulus_situation is ‘physical object’

Rule: 4

if the environment is numbers

or the environment is formulas

or the environment is ‘computer programs’

then the stimulus_situation is symbolic

41MEDIA ADVISOR: A DEMONSTRATION RULE-BASED EXPERT SYSTEM

hp
Highlight

hp
Sticky Note
واختيار وسيلة لتقديم برنامج تدريبي على أساسوظيفة المتدرب.

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
موظف كتابي

hp
Sticky Note
وضع التحفيز اللفظي

hp
Sticky Note
الوضع التحفيز البصرية

Rule: 5

if the job is lecturing

or the job is advising

or the job is counselling

then the stimulus_response is oral

Rule: 6

if the job is building

or the job is repairing

or the job is troubleshooting

then the stimulus_response is ‘hands-on’

Rule: 7

if the job is writing

or the job is typing

or the job is drawing

then the stimulus_response is documented

Rule: 8

if the job is evaluating

or the job is reasoning

or the job is investigating

then the stimulus_response is analytical

Rule: 9

if the stimulus_situation is ‘physical object’

and the stimulus_response is ‘hands-on’

and feedback is required

then medium is workshop

Rule: 10

if the stimulus_situation is symbolic

and the stimulus_response is analytical

and feedback is required

then medium is ‘lecture – tutorial’

Rule: 11

if the stimulus_situation is visual

and the stimulus_response is documented

and feedback is not required

then medium is videocassette

Rule: 12

if the stimulus_situation is visual

and the stimulus_response is oral

and feedback is required

then medium is ‘lecture – tutorial’

42 RULE-BASED EXPERT SYSTEMS

hp
Sticky Note
شريط فيديو

Rule: 13

if the stimulus_situation is verbal

and the stimulus_response is analytical

and feedback is required

then medium is ‘lecture – tutorial’

Rule: 14

if the stimulus_situation is verbal

and the stimulus_response is oral

and feedback is required

then medium is ‘role-play exercises’

/* The SEEK directive sets up the goal of the rule set

seek medium

Objects

MEDIA ADVISOR uses six linguistic objects: environment, stimulus_situation, job,

stimulus_response, feedback and medium. Each object can take one of the allowed

values (for example, object environment can take the value of papers, manuals,

documents, textbooks, pictures, illustrations, photographs, diagrams, machines, build-

ings, tools, numbers, formulas, computer programs). An object and its value

constitute a fact (for instance, the environment is machines, and the job is

repairing). All facts are placed in the database.

Object Allowed values Object Allowed values

environment papers job lecturing

manuals advising

documents counselling

textbooks building

pictures repairing

illustrations troubleshooting

photographs writing

diagrams typing

machines drawing

buildings evaluating

tools reasoning

numbers

formulas

investigating

computer programs stimulus_ response oral

hands-on

documented

analytical

stimulus_situation verbal

visual

physical object feedback required

symbolic not required

MEDIA ADVISOR: A DEMONSTRATION RULE-BASED EXPERT SYSTEM 43

hp
Highlight

hp
Highlight

hp
Highlight
حالة التحفيز

hp
Sticky Note
حالة التحفيز

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

Options

The final goal of the rule-based expert system is to produce a solution to the

problem based on input data. In MEDIA ADVISOR, the solution is a medium

selected from the list of four options:

medium is workshop

medium is ‘lecture – tutorial’

medium is videocassette

medium is ‘role-play exercises’

Dialogue

In the dialogue shown below, the expert system asks the user to input the data

needed to solve the problem (the environment, the job and feedback). Based on

the answers supplied by the user (answers are indicated by arrows), the expert

system applies rules from its knowledge base to infer that the stimulus_situation is

physical object, and the stimulus_response is hands-on. Rule 9 then selects one of

the allowed values of medium.

What sort of environment is a trainee dealing with on the job?

) machines

Rule: 3

if the environment is machines

or the environment is buildings

or the environment is tools

then the stimulus_situation is ‘physical object’

In what way is a trainee expected to act or respond on the job?

) repairing

Rule: 6

if the job is building

or the job is repairing

or the job is troubleshooting

then the stimulus_response is ‘hands-on’

Is feedback on the trainee’s progress required during training?

) required

Rule: 9

if the stimulus_situation is ‘physical object’

and the stimulus_response is ‘hands-on’

and feedback is required

then medium is workshop

medium is workshop

44 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

Inference techniques

The standard inference technique in Leonardo is backward chaining with

opportunistic forward chaining, which is the most efficient way to deal with

the available information. However, Leonardo also enables the user to turn off

either backward or forward chaining, and thus allows us to study each inference

technique separately.

Forward chaining is data-driven reasoning, so we need first to provide some

data. Assume that

the environment is machines

‘environment’ instantiated by user input to ‘machines’

the job is repairing

‘job’ instantiated by user input to ‘repairing’

feedback is required

‘feedback’ instantiated by user input to ‘required’

The following process will then happen:

Rule: 3 fires ‘stimulus_situation’ instantiated by Rule: 3 to ‘physical object’

Rule: 6 fires ‘stimulus_response’ instantiated by Rule: 6 to ‘hands-on’

Rule: 9 fires ‘medium’ instantiated by Rule: 9 to ‘workshop’

No rules fire stop

Backward chaining is goal-driven reasoning, so we need first to establish a

hypothetical solution (the goal). Let us, for example, set up the following goal:

‘medium’ is ‘workshop’

Pass 1

Trying Rule: 9 Need to find object ‘stimulus_situation’

Rule: 9 stacked Object ‘stimulus_situation’ sought as ‘physical

object’

Pass 2

Trying Rule: 3 Need to find object ‘environment’

Rule: 3 stacked Object ‘environment’ sought as ‘machines’

ask environment

)machines ‘environment’ instantiated by user input to

‘machines’

Trying Rule: 3 ‘stimulus_situation’ instantiated by Rule: 3 to

‘physical object’

Pass 3

Trying Rule: 9 Need to find object ‘stimulus_response’

Rule: 9 stacked Object ‘stimulus_response’ sought as ‘hands-on’

45MEDIA: A DEMONSTRATION RULE-BASED EXPERT SYSTEM

hp
Highlight

hp
Highlight

hp
Highlight
نفعي

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
إنشاء مثيل

Pass 4

Trying Rule: 6 Need to find object ‘job’

Rule: 6 stacked Object ‘job’ sought as ‘building’

ask job

) repairing ‘job’ instantiated by user input to ‘repairing’

Trying Rule: 6 ‘stimulus_response’ instantiated by Rule: 6 to

‘hands-on’

Pass 5

Trying Rule: 9 Need to find object ‘feedback’

Rule: 9 stacked Object ‘feedback’ sought as ‘required’

ask feedback

) required ‘feedback’ instantiated by user input to ‘required’

Trying Rule: 9 ‘medium’ instantiated by Rule: 9 to ‘workshop’

medium is workshop

It is useful to have a tree diagram that maps a consultation session with an

expert system. A diagram for MEDIA ADVISOR is shown in Figure 2.8. The root

node is the goal; when the system is started, the inference engine seeks to

determine the goal’s value.

Goal: medium

stimulus
situation

?

Rule: 10Rule: 9 Rule: 11 Rule: 12 Rule: 13 Rule: 14

Rule: 2Rule: 1 Rule: 3 Rule: 4 Rule: 5 Rule: 6 Rule: 7 Rule: 8

stimulus
response

?

environment
?

Ask:
environment

job
?

Ask:
job

feedback
?

Ask:
feedback

Figure 2.8 Tree diagram for the rule-based expert system MEDIA ADVISOR

46 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

Does MEDIA ADVISOR handle all possible situations?

When we start to use our expert system more often, we might find that the

provided options do not cover all possible situations. For instance, the following

dialogue might occur:

What sort of environment is a trainee dealing with on the job?

)illustrations

In what way is a trainee expected to act or respond on the job?

)drawing

Is feedback on the trainee’s progress required during training?

)required

I am unable to draw any conclusions on the basis of the data.

Thus, MEDIA ADVISOR in its present state cannot handle this particular

situation. Fortunately, the expert system can easily be expanded to accommo-

date more rules until it finally does what the user wants it to do.

2.8 Conflict resolution

Earlier in this chapter, we considered two simple rules for crossing a road. Let us

now add a third rule. We will get the following set of rules:

Rule 1:

IF the ‘traffic light’ is green

THEN the action is go

Rule 2:

IF the ‘traffic light’ is red

THEN the action is stop

Rule 3:

IF the ‘traffic light’ is red

THEN the action is go

What will happen?

The inference engine compares IF (condition) parts of the rules with data

available in the database, and when conditions are satisfied the rules are set to

fire. The firing of one rule may affect the activation of other rules, and therefore

the inference engine must allow only one rule to fire at a time. In our road

crossing example, we have two rules, Rule 2 and Rule 3, with the same IF part.

Thus both of them can be set to fire when the condition part is satisfied. These

rules represent a conflict set. The inference engine must determine which rule to

fire from such a set. A method for choosing a rule to fire when more than one

rule can be fired in a given cycle is called conflict resolution.

47CONFLICT RESOLUTION

hp
Sticky Note
حل النزاعات

hp
Highlight

hp
Highlight

If the traffic light is red, which rule should be executed?

In forward chaining, both rules would be fired. Rule 2 is fired first as the top-

most one, and as a result, its THEN part is executed and linguistic object action

obtains value stop. However, Rule 3 is also fired because the condition part of

this rule matches the fact ‘traffic light’ is red, which is still in the database.

As a consequence, object action takes new value go. This simple example shows

that the rule order is vital when the forward chaining inference technique is used.

How can we resolve a conflict?

The obvious strategy for resolving conflicts is to establish a goal and stop the rule

execution when the goal is reached. In our problem, for example, the goal is to

establish a value for linguistic object action. When the expert system determines

a value for action, it has reached the goal and stops. Thus if the traffic light is

red, Rule 2 is executed, object action attains value stop and the expert system

stops. In the given example, the expert system makes a right decision; however if

we arranged the rules in the reverse order, the conclusion would be wrong. It

means that the rule order in the knowledge base is still very important.

Are there any other conflict resolution methods?

Several methods are in use (Giarratano and Riley, 1998; Shirai and Tsuji, 1982):

. Fire the rule with the highest priority. In simple applications, the priority can

be established by placing the rules in an appropriate order in the knowledge

base. Usually this strategy works well for expert systems with around 100

rules. However, in some applications, the data should be processed in order of

importance. For example, in a medical consultation system (Durkin, 1994),

the following priorities are introduced:

Goal 1. Prescription is? Prescription

RULE 1 Meningitis Prescription1

(Priority 100)

IF Infection is Meningitis

AND The Patient is a Child

THEN Prescription is Number_1

AND Drug Recommendation is Ampicillin

AND Drug Recommendation is Gentamicin

AND Display Meningitis Prescription1

RULE 2 Meningitis Prescription2

(Priority 90)

IF Infection is Meningitis

AND The Patient is an Adult

THEN Prescription is Number_2

AND Drug Recommendation is Penicillin

AND Display Meningitis Prescription2

48 RULE-BASED EXPERT SYSTEMS

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Sticky Note
التهاب السحايا

. Fire the most specific rule. This method is also known as the longest

matching strategy. It is based on the assumption that a specific rule processes

more information than a general one. For example,

Rule 1:

IF the season is autumn

AND the sky is cloudy

AND the forecast is rain

THEN the advice is ‘stay home’

Rule 2:

IF the season is autumn

THEN the advice is ‘take an umbrella’

If the season is autumn, the sky is cloudy and the forecast is rain, then Rule 1

would be fired because its antecedent, the matching part, is more specific than

that of Rule 2. But if it is known only that the season is autumn, then Rule 2

would be executed.

. Fire the rule that uses the data most recently entered in the database. This

method relies on time tags attached to each fact in the database. In the conflict

set, the expert system first fires the rule whose antecedent uses the data most

recently added to the database. For example,

Rule 1:

IF the forecast is rain [08:16 PM 11/25/96]

THEN the advice is ‘take an umbrella’

Rule 2:

IF the weather is wet [10:18 AM 11/26/96]

THEN the advice is ‘stay home’

Assume that the IF parts of both rules match facts in the database. In this

case, Rule 2 would be fired since the fact weather is wet was entered after the

fact forecast is rain. This technique is especially useful for real-time expert

system applications when information in the database is constantly updated.

The conflict resolution methods considered above are simple and easily

implemented. In most cases, these methods provide satisfactory solutions.

However, as a program grows larger and more complex, it becomes increasingly

difficult for the knowledge engineer to manage and oversee rules in the

knowledge base. The expert system itself must take at least some of the burden

and understand its own behaviour.

To improve the performance of an expert system, we should supply the

system with some knowledge about the knowledge it possesses, or in other

words, metaknowledge.

Metaknowledge can be simply defined as knowledge about knowledge.

Metaknowledge is knowledge about the use and control of domain knowledge

in an expert system (Waterman, 1986). In rule-based expert systems, meta-

knowledge is represented by metarules. A metarule determines a strategy for the

use of task-specific rules in the expert system.

49CONFLICT RESOLUTION

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight

hp
Highlight
علم الدراية

hp
Highlight

hp
Highlight

What is the origin of metaknowledge?

The knowledge engineer transfers the knowledge of the domain expert to the

expert system, learns how problem-specific rules are used, and gradually creates

in his or her own mind a new body of knowledge, knowledge about the overall

behaviour of the expert system. This new knowledge, or metaknowledge, is

largely domain-independent. For example,

Metarule 1:

Rules supplied by experts have higher priorities than rules supplied by

novices.

Metarule 2:

Rules governing the rescue of human lives have higher priorities than rules

concerned with clearing overloads on power system equipment.

Can an expert system understand and use metarules?

Some expert systems provide a separate inference engine for metarules. However,

most expert systems cannot distinguish between rules and metarules. Thus

metarules should be given the highest priority in the existing knowledge base.

When fired, a metarule ‘injects’ some important information into the database

that can change the priorities of some other rules.

2.9 Advantages and disadvantages of rule-based expert
systems

Rule-based expert systems are generally accepted as the best option for building

knowledge-based systems.

Which features make rule-based expert systems particularly attractive for

knowledge engineers?

Among these features are:

. Natural knowledge representation. An expert usually explains the problem-

solving procedure with such expressions as this: ‘In such-and-such situation,

I do so-and-so’. These expressions can be represented quite naturally as

IF-THEN production rules.

. Uniform structure. Production rules have the uniform IF-THEN structure.

Each rule is an independent piece of knowledge. The very syntax of produc-

tion rules enables them to be self-documented.

. Separation of knowledge from its processing. The structure of a rule-based

expert system provides an effective separation of the knowledge base from the

inference engine. This makes it possible to develop different applications

using the same expert system shell. It also allows a graceful and easy

expansion of the expert system. To make the system smarter, a knowledge

engineer simply adds some rules to the knowledge base without intervening

in the control structure.

50 RULE-BASED EXPERT SYSTEMS

hp
Highlight
المبتدئين

hp
Highlight
إنقاذ الأرواح البشرية

hp
Highlight

hp
Highlight

. Dealing with incomplete and uncertain knowledge. Most rule-based expert

systems are capable of representing and reasoning with incomplete and

uncertain knowledge. For example, the rule

IF season is autumn

AND sky is ‘cloudy’

AND wind is low

THEN forecast is clear { cf 0.1 };

forecast is drizzle { cf 1.0 };

forecast is rain { cf 0.9 }

could be used to express the uncertainty of the following statement, ‘If the

season is autumn and it looks like drizzle, then it will probably be another wet

day today’.

The rule represents the uncertainty by numbers called certainty factors

fcf 0.1g. The expert system uses certainty factors to establish the degree of

confidence or level of belief that the rule’s conclusion is true. This topic will

be considered in detail in Chapter 3.

All these features of the rule-based expert systems make them highly desirable

for knowledge representation in real-world problems.

Are rule-based expert systems problem-free?

There are three main shortcomings:

. Opaque relations between rules. Although the individual production rules

tend to be relatively simple and self-documented, their logical interactions

within the large set of rules may be opaque. Rule-based systems make it

difficult to observe how individual rules serve the overall strategy. This

problem is related to the lack of hierarchical knowledge representation in

the rule-based expert systems.

. Ineffective search strategy. The inference engine applies an exhaustive

search through all the production rules during each cycle. Expert systems

with a large set of rules (over 100 rules) can be slow, and thus large rule-based

systems can be unsuitable for real-time applications.

. Inability to learn. In general, rule-based expert systems do not have an

ability to learn from the experience. Unlike a human expert, who knows

when to ‘break the rules’, an expert system cannot automatically modify its

knowledge base, or adjust existing rules or add new ones. The knowledge

engineer is still responsible for revising and maintaining the system.

2.10 Summary

In this chapter, we presented an overview of rule-based expert systems. We

briefly discussed what knowledge is, and how experts express their knowledge in

the form of production rules. We identified the main players in the expert

51SUMMARY

hp
Sticky Note
علاقات مبهمة بين القواعد

hp
Sticky Note
استراتيجية البحث غير الفعالة.

hp
Sticky Note
عدم القدرة على التعلم.

system development team and showed the structure of a rule-based system. We

discussed fundamental characteristics of expert systems and noted that expert

systems can make mistakes. Then we reviewed the forward and backward

chaining inference techniques and debated conflict resolution strategies. Finally,

the advantages and disadvantages of rule-based expert systems were examined.

The most important lessons learned in this chapter are:

. Knowledge is a theoretical or practical understanding of a subject. Knowledge

is the sum of what is currently known.

. An expert is a person who has deep knowledge in the form of facts and rules

and strong practical experience in a particular domain. An expert can do

things other people cannot.

. The experts can usually express their knowledge in the form of production

rules.

. Production rules are represented as IF (antecedent) THEN (consequent)

statements. A production rule is the most popular type of knowledge

representation. Rules can express relations, recommendations, directives,

strategies and heuristics.

. A computer program capable of performing at a human-expert level in a

narrow problem domain area is called an expert system. The most popular

expert systems are rule-based expert systems.

. In developing rule-based expert systems, shells are becoming particularly

common. An expert system shell is a skeleton expert system with the

knowledge removed. To build a new expert system application, all the user

has to do is to add the knowledge in the form of rules and provide relevant

data. Expert system shells offer a dramatic reduction in the development time

of expert systems.

. The expert system development team should include the domain expert, the

knowledge engineer, the programmer, the project manager and the end-user.

The knowledge engineer designs, builds and tests an expert system. He or she

captures the knowledge from the domain expert, establishes reasoning

methods and chooses the development software. For small expert systems

based on expert system shells, the project manager, knowledge engineer,

programmer and even the expert could be the same person.

. A rule-based expert system has five basic components: the knowledge base,

the database, the inference engine, the explanation facilities and the user

interface. The knowledge base contains the domain knowledge represented as

a set of rules. The database includes a set of facts used to match against the IF

parts of rules. The inference engine links the rules with the facts and carries

out the reasoning whereby the expert system reaches a solution. The

explanation facilities enable the user to query the expert system about how

a particular conclusion is reached and why a specific fact is needed. The user

interface is the means of communication between a user and an expert

system.

52 RULE-BASED EXPERT SYSTEMS

. Expert systems separate knowledge from its processing by splitting up the

knowledge base and the inference engine. This makes the task of building and

maintaining an expert system much easier. When an expert system shell is

used, a knowledge engineer or an expert simply enter rules in the knowledge

base. Each new rule adds some new knowledge and makes the expert system

smarter.

. Expert systems provide a limited explanation capability by tracing the rules

fired during a problem-solving session.

. Unlike conventional programs, expert systems can deal with incomplete and

uncertain data and permit inexact reasoning. However, like their human

counterparts, expert systems can make mistakes when information is incom-

plete or fuzzy.

. There are two principal methods to direct search and reasoning: forward

chaining and backward chaining inference techniques. Forward chaining is

data-driven reasoning; it starts from the known data and proceeds forward

until no further rules can be fired. Backward chaining is goal-driven reason-

ing; an expert system has a hypothetical solution (the goal), and the inference

engine attempts to find the evidence to prove it.

. If more than one rule can be fired in a given cycle, the inference engine

must decide which rule to fire. A method for deciding is called conflict

resolution.

. Rule-based expert systems have the advantages of natural knowledge repres-

entation, uniform structure, separation of knowledge from its processing, and

coping with incomplete and uncertain knowledge.

. Rule-based expert systems also have disadvantages, especially opaque rela-

tions between rules, ineffective search strategy, and inability to learn.

Questions for review

1 What is knowledge? Explain why experts usually have detailed knowledge of a limited

area of a specific domain. What do we mean by heuristic?

2 What is a production rule? Give an example and define two basic parts of the

production rule.

3 List and describe the five major players in the expert system development team. What

is the role of the knowledge engineer?

4 What is an expert system shell? Explain why the use of an expert system shell can

dramatically reduce the development time of an expert system.

5 What is a production system model? List and define the five basic components of an

expert system.

6 What are the fundamental characteristics of an expert system? What are the

differences between expert systems and conventional programs?

53QUESTIONS FOR REVIEW

7 Can an expert system make mistakes? Why?

8 Describe the forward chaining inference process. Give an example.

9 Describe the backward chaining inference process. Give an example.

10 List problems for which the forward chaining inference technique is appropriate. Why is

backward chaining used for diagnostic problems?

11 What is a conflict set of rules? How can we resolve a conflict? List and describe the

basic conflict resolution methods.

12 List advantages of rule-based expert systems. What are their disadvantages?

References

Duda, R., Gaschnig, J. and Hart, P. (1979). Model design in the PROSPECTOR

consultant system for mineral exploration, Expert Systems in the Microelectronic

Age, D. Michie, ed., Edinburgh University Press, Edinburgh, Scotland, pp. 153–167.

Durkin, J. (1994). Expert Systems Design and Development. Prentice Hall, Englewood

Cliffs, NJ.

Feigenbaum, E.A., Buchanan, B.G. and Lederberg, J. (1971). On generality and

problem solving: a case study using the DENDRAL program, Machine Intelligence

6, B. Meltzer and D. Michie, eds, Edinburgh University Press, Edinburgh, Scotland,

pp. 165–190.

Giarratano, J. and Riley, G. (1998). Expert Systems: Principles and Programming, 3rd edn.

PWS Publishing Company, Boston.

Negnevitsky, M. (1996). Crisis management in power systems: a knowledge based

approach, Applications of Artificial Intelligence in Engineering XI, R.A. Adey,

G. Rzevski and A.K. Sunol, eds, Computational Mechanics Publications, South-

ampton, UK, pp. 122–141.

Newell, A. and Simon, H.A. (1972). Human Problem Solving. Prentice Hall, Englewood

Cliffs, NJ.

Shirai, Y. and Tsuji, J. (1982). Artificial Intelligence: Concepts, Technologies and Applica-

tions. John Wiley, New York.

Shortliffe, E.H. (1976). MYCIN: Computer-Based Medical Consultations. Elsevier Press,

New York.

Waterman, D.A. (1986). A Guide to Expert Systems. Addison-Wesley, Reading, MA.

Waterman, D.A. and Hayes-Roth, F. (1978). An overview of pattern-directed inference

systems, Pattern-Directed Inference Systems, D.A. Waterman and F. Hayes-Roth, eds,

Academic Press, New York.

54 RULE-BASED EXPERT SYSTEMS

